Building Polyhedra by Self-Assembly: Theory and Experiment
نویسندگان
چکیده
We investigate the utility of a mathematical framework based on discrete geometry to model biological and synthetic self-assembly. Our primary biological example is the self-assembly of icosahedral viruses; our synthetic example is surface-tension-driven self-folding polyhedra. In both instances, the process of self-assembly is modeled by decomposing the polyhedron into a set of partially formed intermediate states. The set of all intermediates is called the configuration space, pathways of assembly are modeled as paths in the configuration space, and the kinetics and yield of assembly are modeled by rate equations, Markov chains, or cost functions on the configuration space. We review an interesting interplay between biological function and mathematical structure in viruses in light of this framework. We discuss in particular: (i) tiling theory as a coarse-grained description of all-atom models; (ii) the building game-a growth model for the formation of polyhedra; and (iii) the application of these models to the self-assembly of the bacteriophage MS2. We then use a similar framework to model self-folding polyhedra. We use a discrete folding algorithm to compute a configuration space that idealizes surface-tension-driven self-folding and analyze pathways of assembly and dominant intermediates. These computations are then compared with experimental observations of a self-folding dodecahedron with side 300 μm. In both models, despite a combinatorial explosion in the size of the configuration space, a few pathways and intermediates dominate self-assembly. For self-folding polyhedra, the dominant intermediates have fewer degrees of freedom than comparable intermediates, and are thus more rigid. The concentration of assembly pathways on a few intermediates with distinguished geometric properties is biologically and physically important, and suggests deeper mathematical structure.
منابع مشابه
Characterization and Construction of a Family of Highly Symmetric Spherical Polyhedra with Application in Modeling Self-Assembling Structures
The regular polyhedra have the highest order of 3D symmetries and are exceptionally attractive templates for (self)-assembly using minimal types of building blocks, from nano-cages and virus capsids to large scale constructions like glass domes. However, they only represent a small number of possible spherical layouts which can serve as templates for symmetric assembly. In this paper, we formal...
متن کاملPredictive self-assembly of polyhedra into complex structures.
Predicting structure from the attributes of a material's building blocks remains a challenge and central goal for materials science. Isolating the role of building block shape for self-assembly provides insight into the ordering of molecules and the crystallization of colloids, nanoparticles, proteins, and viruses. We investigated 145 convex polyhedra whose assembly arises solely from their ani...
متن کاملAlgorithmic design of self-folding polyhedra.
Self-assembly has emerged as a paradigm for highly parallel fabrication of complex three-dimensional structures. However, there are few principles that guide a priori design, yield, and defect tolerance of self-assembling structures. We examine with experiment and theory the geometric principles that underlie self-folding of submillimeter-scale higher polyhedra from two-dimensional nets. In par...
متن کاملStructure and self-assembly of viruses
In a landmark paper Sir Aaron Klug and Don Caspar have established a theory that predicts the surface structures of viruses in terms of a family of polyhedra [1]. It is fundamental in virology and has a broad spectrum of applications, ranging from image analysis of experimental data to the construction of models for the self-assembly of viral capsids (i.e. of the protein shells encapsulating, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Artificial life
دوره 20 4 شماره
صفحات -
تاریخ انتشار 2014